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The response of a Hill’s spherical vortex to an irrotational axisymmetric small per- 
turbation is examined on the assumption that viscous diffusion of vorticity is negligible. 
The problem of determining the response is first reduced to a system of differential 
equations for the evolution of the Legendre coefficients of the disturbance stream 
function. This system is then solved approximately and it is shown that, if the initial 
disturbance is such as to  make the vortex prolate spheroidal, the vortex detrains a 
fraction ;E of its original volume, where c is the fractional extension of the axis of 
symmetry in the imposed distortion. The detrained fluid forms a thin spike growing 
from the rear stagnation point. If the vortex is initially oblate, irrotational fluid is 
entrained a t  the rear stagnation point to the interior of the vortex. 

1. Introduction 
Hill’s spherical vortex (Hill 1894) provides one of the best-known examples of a 

steady rotational solution of the classical equations of inviscid incompressible fluid 
flow, and it is rather remarkable that its stability characteristics have not been 
investigated in detail.? The spherical vortex is known to be an extreme member of a 
one-parameter family of steady vortex rings (Norbury 1973) whose global stability 
to axisymmetric disturbances has been inferred by Benjamin (1976) in an approach 
to the stability problem based on the methods of functional analysis. Benjamin shows 
essentially that, subject to certain subsidiary conditions, the kinetic energy associated 
with any steady vortex ring is greater than the kinetic energy associated with any 
neighbouring axisymmetric unsteady solution of the governing equations; this 
property guarantees that disturbance energy cannot spontaneously grow at the 
expense of the parent vortex. The analysis below, based on linear perturbation theory, 
is consistent with this conclusion, but a t  the same time reveals a type of behaviour 
that lies outside the scope of the functional-analytic approach, viz. if the spherical 
surface of the Hill’s vortex is subjected to an axisymmetric perturbation, then this 
perturbation decays exponentially at  all points except in an exponentially decreasing 
neighbourhood of the rear stagnation point of the vortex (in a frame of reference in 

t During the course of this work, it wm drawn to our attention that Bliss (1973) has studied the 
problem by methods similar to those described here, and has obtained equations equivalent to 
(2.19) below. He did not att,empt an analytical solution of these equations, but drew similar 
conclusions to ours, from a numerical study, concerning the failure of a truncation technique. 
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which the undisturbed flow is steady); in this neighbourhood, the perturbation 
increases without limit ! 

Physically, i t  is quite easy to see what is happening: since the vortex lines are 
frozen in the fluid, the surface of the vortex behaves like a material surface. The 
irrotational flow outside the vortex tends to sweep the perturbation towards the rear 
stagnation point where it develops an increasingly spiky structure. This sweeping 
process is modified by the self-induced velocity associated with the vorticity per- 
turbation at  the vortex surface; but the modification is not such as to prevent con- 
centration and amplification of the disturbance at the rear stagnation point. 

This type of spatially non-uniform behaviour is evidently associated with the 
presence in the undisturbed flow of a rear stagnation point. It seems most unlikely that 
similar behaviour could occur in the case of other (non-degenerate) members of the 
one-parameter family of vortex rings mentioned above. The process does nevertheless 
have some points of contact with the processes of entrainment and detrainment of 
vorticity in real ring vortices, as described by Maxworthy (1972) on the basis of visual 
studies. Maxworthy found that vorticity is in general spread throughout the whole 
volume of fluid that is carried along with a conventional vortex ring (although it is 
significantly weaker outside the vortex ring than inside). Viscous diffusion plays a 
dual role, in part causing a spread of vorticity and so an increase in the volume of the 
translating mass of fluid, and in part permitting detrainment of rotational fluid into 
a thin wake which emanates from the rear stagnation point. We shall find that, for 
Hill’s vortex, both entrainment and detrainment processes can in fact be understood 
within the context of a purely inviscid analysis. 

The rapid growth of the spike at  the rear stagnation point of Hill’s vortex is similar 
to the rapid growth of the viscous boundary layer at  the rear stagnation point of an 
impulsively started cylinder (Proudman & Johnson 1962). In both cases, vorticity is 
found a t  small times in a region of outwardly convecting flow (viscous diffusion being 
the agency responsible for the initial generation of vorticity in the problem studied 
by Proudman & Johnson). 

An axisymmetric perturbation of a Hill’s vortex may be conceived in terms of an 
externally imposed irrotational distortion. For example, if a small Hill’s vortex is 
embedded in irrotational flow through a contracting duct, then, relative to axes 
moving with the vortex, it  experiences an axisymmetric irrotational strain, tending 
to make it prolate, with major axis along the axis of symmetry. Alternatively, if the 
small vortex is carried through a ring vortex with the same axis of symmetry it will 
experience first an extensive strain (tending to make it prolate), then a compressive 
strain (tending to restore the spherical shape); nonlinear evolution of the Hill’s 
vortex during the process of interaction will presumably lead to a net residual axi- 
symmetric perturbation which will continue to evolve after the actual interaction 
becomes negligible. 

The particular property of the Hill’s vortex that makes a stability analysis tractable 
is the uniformity of o/s throughout the vortex, where w is the azimuthal component 
of vorticity, and s represents distance from the axis of symmetry. This property 
persists under unsteady irrotational perturbations, since the vorticity equation in an 
inviscid incompressible fluid may be written in the simple form 
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where D/Dt is the Lagrangian (or material) derivative. We shall restrict attention to 
externally imposed irrotational disturbances of the kind discussed above, so that, if 
w = As in the undisturbed vortex, where A is a constant, then w = As in the disturbed 
vortex also. Attention may then be focused on the evolution of the bounding surface 
#( t )  of the region of rotational flow. 

The equations governing small axisymmetric perturbations are derived in tj 2. 
They can be reduced to an infinite set of ordinary differential equations for the co- 
efficients in a Legendre expansion of the perturbation. This infinite system when 
truncated can be integrated without difficulty, but the truncation is valid only for 
comparatively small times. For longer times, the coefficients fail to decay as their 
order increases. An approximate treatment, valid €or large times, is presented in $3. 

2. The evolution equations 
The spherical vortex may be represented by the Stokes stream function 

in spherical polar co-ordinates (r, 8, x) relative to an origin 0 at the centre of the 
vortex, with 8 = 0 parallel to the uniform stream U a t  infinity. Note that, with this 
orientation of axes, the rear stagnation point is at  r = a, 8 = 0. The distance from the 
axis of symmetry is s = rsin 8. The vorticity distribution is w = V A u = (0, 0,  wo),  
where 

i.e. 
0 ( r  > a )  

As ( r  < a )  w o =  { 
with A = - 15U/2a2. 

Suppose now that a small axisymmetric perturba.tion of the surface r = a of the 
vortex is imposed at some initial instant t = 0. Then its surface S(t) will subsequently 
distort according to an equation of the form 

r = a(1 +sh(8, t ) ) .  (2.4) 

Provided the perturbation is irrotational in the sense indicated in tj 1, the stream 
function $(r, 8)  of the disturbed flow must satisfy 

( - A r F 2 e  in V+ 

in V- 
D2$ = - rsin Bw(r, 8) = 

where V, denote the exterior and interior of S(t)  respectively. Let 

Then, by virtue of (2.3) and (2.5), we have evidently 

D2$,- = D2$1+ = 0, (2.7) 

i.e. the disturbance stream function represents an irrotational flow. 
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The general axisymmetric solutions of (2.7), with 1+9~- regular a t  r = 0 and rCrl+ 
giving at most a dipole velocity field as r+ co, are 

m n+l 
$-l-(r, 8, t )  = a2U n= C 1 An(t) (:) sin26Pk(p),\ 

$-l+(r, 6, t )  = a2U 
n = l  

where p = cos 8. 
The velocity field is (u, v, O ) ,  where 

and is thus given by 

in v-, (2.10) 

(2.11) 

aD 

cOSe+cu c A ,  
1 

m 

1 
sine-cU C, A ,  (b) n-l (n + I ) sin BPA (p) 

in v,. 
m 

1 
c o s e + e u ~ ~ n  (:)n+2 n(n + 1)  pn(p) 

s i n 8 + c U z B n  (:) n+2 n sin B P ~  (p) 
1 

Continuity of u (or of I+9) across s(t) to order E gives 

A ,  = Bn. (2.12) 

Continuity of v (or equivalently of the pressure field) across s(t) to order E then gives 

15 m 

X (2n+I )An( t )Pk(~)  = -,h(p,t). 
n=l 

Now the surface S(t) is a material surface in the fluid; hence 

D - ( r  - a - mh(6, t ) )  = 0, 
Dt 

or equivalently 

Hence, correct to order E ,  we have, using (2.4) and (2.10), 

(2.13) 

(2.14) 

(2.15) 

or, using the expansion (2.13), and the Legendre equation satisfied by P,(,G), 

(2.17) 
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The first term on the right of (2.15) [or (2.16)] represents convection of the surface of 
the vortex by the velocity field associated with the undisturbed flow, while bhe second 
term represents the effect of the induced velocity a t  the unperturbed surface r = a 
due to the vorticity perturbation distributed over the whole surface. It is evident 
from comparison of the two series on the right of (2.16) that the former effect dominates 
whenn B 1. 

From (2.13)) (2.17), and the identity 

( 2 n + 1 ) P n ( ~ )  = ~A+~(P) -PA-~@) (n = 192, a**), (2.18) 

we now easily find the equations satisfied by the coefficients A,(t), viz. 

A,,,] (n = 1,2, ...). (2.19) a d A ,  n(n - 3 )  (n + 1 )  ( n + 2 )  
2n+3 (2n+ 1 )  --=3(n- U dt 1 )  [- 2n-  1 An-1 - 

Note immediately that dAl/dt  = 0, so that 

A,  = constant = C say. (2.20) 

This merely reflects the conservation of impulse for the disturbed vortex. The impulse 
I and kinetic energy T of the vortex (Batchelor 1967, chap. VII) are in fact given by 

I /pUas  = - 27r + 4 m A 1  + O(e2), 

T/pU2a3 = -+%r - 47reA 1 + W2), 
and constancy of both quantities (at order E )  is guaranteed by (2.20). 

The coefficients A,(t) are simply related to the coefficients h,(t) defined by 
00 

h(6, t )  = Z hn(t) K(P). 
0 

Comparing (2.23) and (2.13), andusing (2.18) again, we have 

hn-1 h,+l - -- 2 (2n+ 1)A, (n = 1,2, 3,  ...). 
2n-1  2n+3 15 

Summing the odd and even members of this set of equations gives 

2 "  )hl = - 15 C ( 4 n f  1)A2,. 
1 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

Now conservation of the volume of rotational fluid implies that ho = 0 for all t ;  in fact, 
inspection of the system (2.19) does confirm that 

consistent with (2.25). 

ao that, from (2.26), 

We also obtain 

(2.27) 

(2.28) 

(2.29) hl = - 4CUt/5a + D, 
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where D is a constant of integration; we may choose the time origin t = 0 so that 
D = 0. It is evident that (2.29) describes a translation of the vortex without distortion 
relative to the origin in which the unperturbed vortex is stationary. 

We expect that, so long as the surface of the vortex does not exhibit any large 
gradients, the coefficients A ,  will decrease rapidly with n. This suggests solving the 
system (2.19) by setting AN+1, AN+,, . . . equal to zero for some value of N .  (This was 
the approach adopted by Bliss 1973.) 

The equations were integrated (with N = 50) using a fourth-order Runge-Kutta 
scheme, the choice of time step being dictated by the shortest time scale occurring 
in the solution; this decreases with N in a way we estimate theoretically from the 
results of $3. The initial disturbance is a spheroidal distortion, i.e. 

(2.30) 

the values of A,(O) are obtained from (2.24) and the results are shown in table 1.  
Clearly when Ut la  = 3-0, the coefficients are not declining rapidly enough with n to 
justify the truncation. 

The reason for this behaviour can be deduced from an approximate solution of the 
governing equations (2.19) valid for n % 1. As a first step, the equations (2.19) are 
expressed in a simpler form in terms of new variables. Let 

a, = n(n + 2) (n  + 3) A,+, (n  = 0,1,2, ...) 
2 n f 5  

(2.31) 

and r = 3Ut/4a. (2.32) 

The equations (2.19) then become 

da,/dr = c,(am-,--a,+,) ( n  = 1,2, ...) 
where 

en = n[l - (2n+ 5)-,]. 

(2.33) 

(2.34) 

When a,, a,, a,, ... have been determined by solving this system of equations, the 
values of A,, A,, A,, . . . are determined a t  once. Then A ,  and A ,  are given by 

(2.36) 

The character of the solutions of (2.33) may be anticipated by the following argu- 
ment. For n B 1, c, N n, and (2.33) may be compared with the partial differential 

equation aa/& = - 2 n a a / h  (2.36) 

for a function a ( n , ~ ) ,  n being regarded as a continuous variable. The solution of 
(2.36) satisfying an initial condition a(n, 0) = H(n) is 

a(n, 7 )  = H(ne-,'). 
For example, if - .  

1 (nl < n < n,), 

0 elsewhere, 
H(n) = 

then 
1 

0 elsewhere. 

(n,ezT 6 n < n2eZ7), 
a(n,7)  = 

(2.37) 

(2.38) 

(2.39) 
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utla Am A 20 A 80 A,, A 50 

1.0 - 1.698 x - 9.144 x - 6.526 x lo-' - 5.233 x lo-'" - 6.332 x 
2-0 - 6.365 x lop3 - 1.174 x - 2.910 x - 9-026 x -4.345 x 10-5 
3.0 - 2-894 x - 1.691 x loW3 - 1.063 x - 6.752 x - 4.437 x 10-4 
4-0 - 6.605 x lows - 1.729 x lo-* - 7.121 x lo-* - 3.836 x - 2.414 x 10-4 

TABLE 1.  The Legendre coefficients of the stream function obtained 
from the governing equations (2.19) truncated at A5,,. 

This indicates the manner in which the 'spectrum ' of the disturbance evolves towards 
higher values of n as 7 increases. 

3. The behaviour for large 7 
It is evident from (2.34) that replacement of c, by n is a good approximation for all 

n 2 1 ; the error when n = 1 is only 2 % and it decreases rapidly as n increases. We 
therefore study here the behaviour of the system 

dam/& = n(a,-, - a,,,) (n = 1,2, . . .), (3 .1 )  

where a&) = 0. (3 .2 )  

The initial values of a, are given in terms of the initial distortion by 

(n = 1,2, ...), (3.3) 
8 

or, consistent with the approximation leading to (3 .1 ) ,  

(3 .4 )  

The system (3.1) admits a particular solution 

a0,(~) = (th7)n (n  = 0 , 1 , 2 ,  ...) (3 .5 )  

(where th 7 = tanh 7); from this we can construct a family of particular solutions 

each of which satisfies ( 3 . 2 )  and the initial conditions 

1 (n = r ) ,  

0 (n > T ) .  
a p ( 0 )  = (3 .7 )  

Thus if a,(O) = 0 for all n > no we can construct a solution of (3 .1 )  and (3 .2 )  by forming 
a linear combination 

it is ea,sy to see that the constants P,, are uniquely determined. 
As in the numerical work described in $ 2 ,  we select for detailed study the case of an 
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initially spheroidal distortion, so that the constants h,( 0) have the values specified 
in (2.30). It follows from (3.4) that 

4 0 )  = - %  
a,(O) = 0 (n 2 2). 

(3.9) 

This is the case no = 1 and thus 

(3.10) 
3 d  
8 d7 

aJ7) = --- (th7)" (n = 0,1,2, ...). 

It is easy to verify that, for large n, la,(~)I has a maximum when 

and the maximum value itself is 

(3.11) 

(3.12) 

This confirms the predicted shift of the spectrum towards large values of n as time 
increases. Note that (3.1 1 )  is compatible with the approximation embodied in (2.36), 
whichimplies that a(n, 7 )  is constant on the characteristic curves 27 = logn + constant. 

The initial conditions (2.30) and the relation (2.24) give Al(0) = Q and hence, from 
(2.35), Ax(?-) = +. Thus, from (2.13) and (2.31) 

m 

h = -g-2A,(t)p++sech2~ C (2n+1)2 (th7)n-3PA(p). (3.13) 
n=3 n(n+ 1) 

Now 

n(n + 1) 
(3.14) 

so that it is consistent with the approximations already made in obtaining (3.1) and 
(3.4) to replace the left-hand side of (3.14) by 4 in working out the sum in (3.13). Thus 
we find 

(3.15) 

The infinite series is easily summed and finally 

h = - + - 2A,(t)p + Q cosech, 7[(1- Zp th7  + th27)-3 - 1 - 3p t h ~ ] .  (3.16) 

The asymptotic behaviour for 7 9 1 is now easily determined. With the approxi- 

and th  7 N 1 - 2e--27, 
mations 

(3.16) gives 
cosech2 7 N 4e-2T 

h - - + ( - 2A2(7) - ye-2T),u + %e-2T{[4e-4T + 2( 1 -p)]-% - I}, (3.17) 

an expression that is uniformly valid in p. The singular behaviour near the rear 
stagnation point p = 1 is now readily apparent. If p is fixed and not equal to 1 then 

h - - S - Rp(7 + constant) + O(e-+), (3.18) 

using (2.35) to determine the asymptotic behaviour of A,. The term proportional to 
,u represents a steady drift without change of shape; the propagation speed is altered 
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by a factor 1 - tc:. Thus, apart from a small residual change of radius, the perturbation 
dies away at  every point of the surface except in a decreasing neighbourhood of the 
rear stagnation point. Right a t  the rear stagnation point, where ,u = 1 ,  (3 .17)  gives 

h N &&, (3 .19)  

so that the perturbation here increases exponentially. Thus we can form the following 
picture of the development of the perturbation. When 6 > 0 (the perturbed vortex 
being then slightly prolate) vorticity is swept off the surface r = a (leaving it at  the 
slightly diminished radius a( 1 - &)) and is shed into a spike in the neighbourhood 
,u z 1. When c: < 0 (corresponding to an initially oblate perturbation) the radius 
increases to a( 1 - i e ) ,  this increase being brought about by entrainment of irrotational 
fluid into the region r < a in the neighbourhood ,u z 1 .  The change of propagation 
speed is just that required by this change of radius. 

The detailed shape of the spike can be found from (3 .17) ;  restoring the physical 
variables r ,  8 and t ,  

r = a+&asexp ( 3 U t / a )  [I +*62exp ( 3 ~ t / a ) ] - J t .  (3 .20)  

According to (3.20) the volume of the spike is V ,  where 

v = ira3eexp ( 3 ~ t / a )  e[i  +*Pexp (3Ut/a)]-gdO, (3 .21 )  1: 
where &is any angle such that 

e x p ( - 3 ~ t / ~ a )  < @< I .  (3 .22)  

The integral is easily evaluated to  give (for sufficiently large t ) ,  

V N 9rea3, (3 .23)  

which is just the volume lost by the Hill’s vortex when its radius shrinks from a to 
a( 1 - 6e). Thus, when E > 0, a definite volume of rotational fluid is detrained from the 
Hill’s vortex into a spike growing from the rear stagnation point. Similarly, when 
e < 0, a definite volume of irrotational fluid is entrained in an indented spike at  the 
rear stagnation point. The form of (3.20) reveals that the growth of the spike in either 
case is controlled entirely by the convective effects of the undisturbed flow field, as 
anticipated in 0 2 .  The motion of a fluid particle near the rear stagnation point in the 
flow field given by (2 .1 )  is governed by the equations 

adr/dt  = 3 U ( r - a ) ,  a d o / &  = -8U6 ,  (3 .24)  

which may be integrated to give 

I r -a  = ( ro-u) exp [3Ua-l(t  - t o ) ] ,  

6 = 8 , e x p [ - 3 U ( t - t 0 ) / 2 a ] ,  
(3 .25)  

where r, and B0 are the co-ordinates of the particle at  t = to. If we use the solution 
(3 .25)  to determine the motion of fluid particles which lie at  t = to on the surface 

ro - a = &uc: exp ( 3 U t 0 / a )  [I + $6; exp ( 3 ~ t , / a ) ] - Q ,  (3 .26)  

we see at  once that at time t ( > to) they lie on the surface (3 .20) .  
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This suggests a way of removing the restriction to small disturbances. Equation 

exp (3  Ut/u)  < 1,  (3.27) 
(3.20) is valid so long as 

that is, so long as the spike is small. Pick a time to for which (3.27) holds and follow 
the subsequent evolution of the surface (3.26) using the full equations for convection 
of particles near the axis. When E > 0, so that the spike grows outwards, these are 

dr/dt = U ( 1 - a3/13), 

rd8/dt = - U (1 + a3/2?), 

and when e < 0, so that the spike grows inwards, 

I dr/dt = - +U( 1 - r2/a2), 

rdO/dt = gU(1- 2r2/a2) 0. 

(3.28) 

(3.29) 

Results obtained in this way for E = + 10-4 are shown in figure 1.  Evidently the spike 
grows very rapidly even for a small initial disturbance. This conclusion is supported 
by calculating the time needed for the spike to reach a point 2a downstream of the 
rear stagnation point. 

The calculation is in two stages. First, according to linear theory the fluid particle 
initially at r = a(1 + e ) ,  8 = 0 is at r = a(1 +q), 8 = 0 at t = to, where, according to 
(3.19), if to B a / U ,  

= &Eexp(3Uto/a), (3.30) 

and this is valid so long as q 4 1.  Secondly, the time T a t  which a fluid particle starting 
at r = a( 1 + q) at t = to arrives a t  r = 2a can be found from the first of equations (3.28) 
and satisfies 

U(T-tO)/a = 1.824 ... +glOg(q-l)+O(q). (3.31) 

Thus on substituting for q from (3.30) we find that to cancels and 

U T / U  = 2.592 ... + + l o g ( ~ - ~ ) + O ( ~ ) .  (3.32) 

When E = 10-4, UTIa = 5.66 ..., so that the spike is one diameter downstream by the 
time the vortex has travelled about 24 diameters. 

When E < 0, the indented spikewill approach theforward stagnation point, although, 
under the effect of convection alone, it will never quite reach it; its surface will instead 
presumably be increasingly distorted by the internal convective action of the vortex, 
its meridian section ultimately developing a tight double spiral structure (see, for 
example, figure 12 of Maxworthy 1972). Viscosity would of course in time tend to  
eliminate variations in w / s  within the new vortex. 

A surprising feature of the results presented in this section is that the response of 
Hill’s vortex contains no oscillatory components. This conclusion is, however, based 
on the approximate treatment of the differential equations embodied in (3.1) and 
(3.4). This approximation can be shown not to violate conservation of volume or 
momentum and to lead to a set of coefficients A ,  which differ from the values obtained 
by truncation by only &lo%;  of course, the time a t  which the comparison is made 
must be small enough for the truncation method to be valid. 
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FIGURE 1. The shape of the spike in the case E = for U t / a  = 3.2 
(dashed curve) and Ut/a = 3.7 (continuous curve). 

However, it is worthwhile to examine the exact system (2 .19)  to see whether or not 
it permits free oscillations. If we write 

A,(t) = A,exp ( iwUt /a ) ,  (3 .33)  

and substitute in the differential equations (2 .19) ,  we find that 

n ( n - 3 )  - ( n + i ) ( n + 2 )  - 
A,+1] (n = 1 , 2 , 3 ,  ...). (3 .34 )  

2 n + 3  
( 2 n +  l ) i w B ,  = 3 ( n -  1 )  ~ 4 - 1  - [ 2 n - 1  

The asymptotic form of the solution of this system of difference equations for large n 
is easily determined: 

where C and D are constants. An acceptable solution must satisfy &- to  a t  an 
exponential rate as n -+ CQ and this behaviour cannot be secured by any real choice 
of w .  Thus free oscillations are not possible. 

2, - Cn-& + D( - I)nn&, (3 .35)  

We are grateful to Prof. P. G. Saffman for drawing our attention to the work of 
Bliss in the course of a valuable discussion of the problem with one of us (DWM). 
The help of Dr J. Toomre in some early computational studies of the system (2.19) 
is also gratefully acknowledged. 
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